Skip to content

Real time record linkage

Real time linkage

In this notebook, we demonstrate splink's incremental and real time linkage capabilities - specifically:

  • the linker.compare_two_records function, that allows you to interactively explore the results of a linkage model; and
  • the linker.find_matches_to_new_records that allows you to incrementally find matches to a small number of new records

Open In Colab

Step 1: Load a pre-trained linkage model

import urllib.request
import json
from pathlib import Path
from splink import Linker, DuckDBAPI, block_on, SettingsCreator, splink_datasets

df = splink_datasets.fake_1000

url = "https://raw.githubusercontent.com/moj-analytical-services/splink_demos/master/demo_settings/real_time_settings.json"

with urllib.request.urlopen(url) as u:
    settings = json.loads(u.read().decode())


linker = Linker(df, settings, db_api=DuckDBAPI())
linker.visualisations.waterfall_chart(
    linker.inference.predict().as_record_dict(limit=2)
)

Step Comparing two records

It's now possible to compute a match weight for any two records using linker.compare_two_records()

record_1 = {
    "unique_id": 1,
    "first_name": "Lucas",
    "surname": "Smith",
    "dob": "1984-01-02",
    "city": "London",
    "email": "lucas.smith@hotmail.com",
}

record_2 = {
    "unique_id": 2,
    "first_name": "Lucas",
    "surname": "Smith",
    "dob": "1983-02-12",
    "city": "Machester",
    "email": "lucas.smith@hotmail.com",
}

linker._settings_obj._retain_intermediate_calculation_columns = True


# To `compare_two_records` the linker needs to compute term frequency tables
# If you have precomputed tables, you can linker.register_term_frequency_lookup()
linker.table_management.compute_tf_table("first_name")
linker.table_management.compute_tf_table("surname")
linker.table_management.compute_tf_table("dob")
linker.table_management.compute_tf_table("city")
linker.table_management.compute_tf_table("email")


df_two = linker.inference.compare_two_records(record_1, record_2)
df_two.as_pandas_dataframe()
match_weight match_probability unique_id_l unique_id_r first_name_l first_name_r gamma_first_name tf_first_name_l tf_first_name_r bf_first_name ... bf_city bf_tf_adj_city email_l email_r gamma_email tf_email_l tf_email_r bf_email bf_tf_adj_email match_key
0 13.161672 0.999891 1 2 Lucas Lucas 2 0.001203 0.001203 87.571229 ... 0.446404 1.0 lucas.smith@hotmail.com lucas.smith@hotmail.com 1 NaN NaN 263.229168 1.0 0

1 rows × 40 columns

Step 3: Interactive comparisons

One interesting applicatin of compare_two_records is to create a simple interface that allows the user to input two records interactively, and get real time feedback.

In the following cell we use ipywidets for this purpose. ✨✨ Change the values in the text boxes to see the waterfall chart update in real time. ✨✨

import ipywidgets as widgets
from IPython.display import display


fields = ["unique_id", "first_name", "surname", "dob", "email", "city"]

left_text_boxes = []
right_text_boxes = []

inputs_to_interactive_output = {}

for f in fields:
    wl = widgets.Text(description=f, value=str(record_1[f]))
    left_text_boxes.append(wl)
    inputs_to_interactive_output[f"{f}_l"] = wl
    wr = widgets.Text(description=f, value=str(record_2[f]))
    right_text_boxes.append(wr)
    inputs_to_interactive_output[f"{f}_r"] = wr

b1 = widgets.VBox(left_text_boxes)
b2 = widgets.VBox(right_text_boxes)
ui = widgets.HBox([b1, b2])


def myfn(**kwargs):
    my_args = dict(kwargs)

    record_left = {}
    record_right = {}

    for key, value in my_args.items():
        if value == "":
            value = None
        if key.endswith("_l"):
            record_left[key[:-2]] = value
        elif key.endswith("_r"):
            record_right[key[:-2]] = value

    # Assuming 'linker' is defined earlier in your code
    linker._settings_obj._retain_intermediate_calculation_columns = True

    df_two = linker.inference.compare_two_records(record_left, record_right)

    recs = df_two.as_pandas_dataframe().to_dict(orient="records")

    display(linker.visualisations.waterfall_chart(recs, filter_nulls=False))


out = widgets.interactive_output(myfn, inputs_to_interactive_output)

display(ui, out)
HBox(children=(VBox(children=(Text(value='1', description='unique_id'), Text(value='Lucas', description='first…



Output()

Finding matching records interactively

It is also possible to search the records in the input dataset rapidly using the linker.find_matches_to_new_records() function

record = {
    "unique_id": 123987,
    "first_name": "Robert",
    "surname": "Alan",
    "dob": "1971-05-24",
    "city": "London",
    "email": "robert255@smith.net",
}


df_inc = linker.inference.find_matches_to_new_records(
    [record], blocking_rules=[]
).as_pandas_dataframe()
df_inc.sort_values("match_weight", ascending=False)
match_weight match_probability unique_id_l unique_id_r first_name_l first_name_r gamma_first_name tf_first_name_l tf_first_name_r bf_first_name ... tf_city_r bf_city bf_tf_adj_city email_l email_r gamma_email tf_email_l tf_email_r bf_email bf_tf_adj_email
6 23.531793 1.000000 0 123987 Robert Robert 2 0.003610 0.00361 87.571229 ... 0.212792 1.000000 1.000000 robert255@smith.net robert255@smith.net 1 0.001267 0.001267 263.229168 1.730964
5 14.550320 0.999958 1 123987 Robert Robert 2 0.003610 0.00361 87.571229 ... 0.212792 1.000000 1.000000 roberta25@smith.net robert255@smith.net 0 0.002535 0.001267 0.423438 1.000000
4 10.388623 0.999255 3 123987 Robert Robert 2 0.003610 0.00361 87.571229 ... 0.212792 0.446404 1.000000 None robert255@smith.net -1 NaN 0.001267 1.000000 1.000000
3 2.427256 0.843228 2 123987 Rob Robert 0 0.001203 0.00361 0.218767 ... 0.212792 10.484859 0.259162 roberta25@smith.net robert255@smith.net 0 0.002535 0.001267 0.423438 1.000000
2 -2.123090 0.186697 8 123987 None Robert -1 NaN 0.00361 1.000000 ... 0.212792 1.000000 1.000000 None robert255@smith.net -1 NaN 0.001267 1.000000 1.000000
1 -2.205894 0.178139 754 123987 None Robert -1 NaN 0.00361 1.000000 ... 0.212792 1.000000 1.000000 j.c@whige.wort robert255@smith.net 0 0.001267 0.001267 0.423438 1.000000
0 -2.802309 0.125383 750 123987 None Robert -1 NaN 0.00361 1.000000 ... 0.212792 10.484859 0.259162 j.c@white.org robert255@smith.net 0 0.002535 0.001267 0.423438 1.000000

7 rows × 39 columns

Interactive interface for finding records

Again, we can use ipywidgets to build an interactive interface for the linker.find_matches_to_new_records function

@widgets.interact(
    first_name="Robert",
    surname="Alan",
    dob="1971-05-24",
    city="London",
    email="robert255@smith.net",
)
def interactive_link(first_name, surname, dob, city, email):
    record = {
        "unique_id": 123987,
        "first_name": first_name,
        "surname": surname,
        "dob": dob,
        "city": city,
        "email": email,
        "group": 0,
    }

    for key in record.keys():
        if type(record[key]) == str:
            if record[key].strip() == "":
                record[key] = None

    df_inc = linker.inference.find_matches_to_new_records(
        [record], blocking_rules=[f"(true)"]
    ).as_pandas_dataframe()
    df_inc = df_inc.sort_values("match_weight", ascending=False)
    recs = df_inc.to_dict(orient="records")

    display(linker.visualisations.waterfall_chart(recs, filter_nulls=False))
interactive(children=(Text(value='Robert', description='first_name'), Text(value='Alan', description='surname'…
linker.visualisations.match_weights_chart()