Estimating m probabilities from labels
Estimating m from a sample of pairwise labels¶
In this example, we estimate the m probabilities of the model from a table containing pairwise record comparisons which we know are 'true' matches. For example, these may be the result of work by a clerical team who have manually labelled a sample of matches.
The table must be in the following format:
source_dataset_l | unique_id_l | source_dataset_r | unique_id_r |
---|---|---|---|
df_1 | 1 | df_2 | 2 |
df_1 | 1 | df_2 | 3 |
It is assumed that every record in the table represents a certain match.
Note that the column names above are the defaults. They should correspond to the values you've set for unique_id_column_name
and source_dataset_column_name
, if you've chosen custom values.
from splink.datasets import splink_dataset_labels
pairwise_labels = splink_dataset_labels.fake_1000_labels
# Choose labels indicating a match
pairwise_labels = pairwise_labels[pairwise_labels["clerical_match_score"] == 1]
pairwise_labels
unique_id_l | source_dataset_l | unique_id_r | source_dataset_r | clerical_match_score | |
---|---|---|---|---|---|
0 | 0 | fake_1000 | 1 | fake_1000 | 1.0 |
1 | 0 | fake_1000 | 2 | fake_1000 | 1.0 |
2 | 0 | fake_1000 | 3 | fake_1000 | 1.0 |
49 | 1 | fake_1000 | 2 | fake_1000 | 1.0 |
50 | 1 | fake_1000 | 3 | fake_1000 | 1.0 |
... | ... | ... | ... | ... | ... |
3171 | 994 | fake_1000 | 996 | fake_1000 | 1.0 |
3172 | 995 | fake_1000 | 996 | fake_1000 | 1.0 |
3173 | 997 | fake_1000 | 998 | fake_1000 | 1.0 |
3174 | 997 | fake_1000 | 999 | fake_1000 | 1.0 |
3175 | 998 | fake_1000 | 999 | fake_1000 | 1.0 |
2031 rows × 5 columns
We now proceed to estimate the Fellegi Sunter model:
from splink import splink_datasets
df = splink_datasets.fake_1000
df.head(2)
unique_id | first_name | surname | dob | city | cluster | ||
---|---|---|---|---|---|---|---|
0 | 0 | Robert | Alan | 1971-06-24 | NaN | robert255@smith.net | 0 |
1 | 1 | Robert | Allen | 1971-05-24 | NaN | roberta25@smith.net | 0 |
import splink.comparison_library as cl
from splink import DuckDBAPI, Linker, SettingsCreator, block_on
settings = SettingsCreator(
link_type="dedupe_only",
blocking_rules_to_generate_predictions=[
block_on("first_name"),
block_on("surname"),
],
comparisons=[
cl.NameComparison("first_name"),
cl.NameComparison("surname"),
cl.DateOfBirthComparison(
"dob",
input_is_string=True,
),
cl.ExactMatch("city").configure(term_frequency_adjustments=True),
cl.EmailComparison("email"),
],
retain_intermediate_calculation_columns=True,
)
linker = Linker(df, settings, db_api=DuckDBAPI(), set_up_basic_logging=False)
deterministic_rules = [
"l.first_name = r.first_name and levenshtein(r.dob, l.dob) <= 1",
"l.surname = r.surname and levenshtein(r.dob, l.dob) <= 1",
"l.first_name = r.first_name and levenshtein(r.surname, l.surname) <= 2",
"l.email = r.email",
]
linker.training.estimate_probability_two_random_records_match(deterministic_rules, recall=0.7)
linker.training.estimate_u_using_random_sampling(max_pairs=1e6)
You are using the default value for `max_pairs`, which may be too small and thus lead to inaccurate estimates for your model's u-parameters. Consider increasing to 1e8 or 1e9, which will result in more accurate estimates, but with a longer run time.
# Register the pairwise labels table with the database, and then use it to estimate the m values
labels_df = linker.table_management.register_labels_table(pairwise_labels, overwrite=True)
linker.training.estimate_m_from_pairwise_labels(labels_df)
# If the labels table already existing in the dataset you could run
# linker.training.estimate_m_from_pairwise_labels("labels_tablename_here")
training_blocking_rule = block_on("first_name")
linker.training.estimate_parameters_using_expectation_maximisation(training_blocking_rule)
<EMTrainingSession, blocking on l."first_name" = r."first_name", deactivating comparisons first_name>
linker.visualisations.parameter_estimate_comparisons_chart()
linker.visualisations.match_weights_chart()