comparison_viewer_dashboard
¶
At a glance
API Documentation: comparison_viewer_dashboard()
Worked Example¶
import splink.comparison_library as cl
import splink.comparison_template_library as ctl
from splink import DuckDBAPI, Linker, SettingsCreator, block_on, splink_datasets
df = splink_datasets.fake_1000
settings = SettingsCreator(
link_type="dedupe_only",
comparisons=[
cl.JaroWinklerAtThresholds("first_name", [0.9, 0.7]),
cl.JaroAtThresholds("surname", [0.9, 0.7]),
ctl.DateComparison(
"dob",
input_is_string=True,
datetime_metrics=["year", "month"],
datetime_thresholds=[1, 1],
),
cl.ExactMatch("city").configure(term_frequency_adjustments=True),
ctl.EmailComparison("email"),
],
blocking_rules_to_generate_predictions=[
block_on("substr(first_name,1,1)"),
block_on("substr(surname, 1,1)"),
],
retain_intermediate_calculation_columns=True,
retain_matching_columns=True,
)
linker = Linker(df, settings, DuckDBAPI())
linker.training.estimate_u_using_random_sampling(max_pairs=1e6)
blocking_rule_for_training = block_on("first_name", "surname")
linker.training.estimate_parameters_using_expectation_maximisation(
blocking_rule_for_training
)
blocking_rule_for_training = block_on("dob")
linker.training.estimate_parameters_using_expectation_maximisation(
blocking_rule_for_training
)
df_predictions = linker.inference.predict(threshold_match_probability=0.2)
linker.visualisations.comparison_viewer_dashboard(
df_predictions, "img/scv.html", overwrite=True
)
# You can view the scv.html file in your browser, or inline in a notebook as follows
from IPython.display import IFrame
IFrame(
src="./img/scv.html", width="100%", height=1200
)
What the chart shows¶
See the following video: An introduction to the Splink Comparison Viewer dashboard