Skip to content

Real time record linkage

Real time linkage¶

In this notebook, we demonstrate splink's incremental and real time linkage capabilities - specifically: - the linker.compare_two_records function, that allows you to interactively explore the results of a linkage model; and - the linker.find_matches_to_new_records that allows you to incrementally find matches to a small number of new records

Step 1: Load a pre-trained linkage model¶

import json
from splink.datasets import splink_datasets
from splink.duckdb.linker import DuckDBLinker
import altair as alt
alt.renderers.enable('html')

with open("../../demo_settings/real_time_settings.json") as f:
    trained_settings = json.load(f)

df = splink_datasets.fake_1000

linker = DuckDBLinker(df, trained_settings)
linker.waterfall_chart(linker.predict().as_record_dict(limit=2))

Step Comparing two records¶

It's now possible to compute a match weight for any two records using linker.compare_two_records()

from splink.term_frequencies import compute_term_frequencies_from_concat_with_tf
record_1  = {
     'unique_id':1,
     'first_name': "Lucas",
     'surname': "Smith",
     'dob': "1984-01-02",
     'city': "London",
     'email': "lucas.smith@hotmail.com"
}

record_2  = {
     'unique_id':2,
     'first_name': "Lucas",
     'surname': "Smith",
     'dob': "1983-02-12",
     'city': "Machester",
     'email': "lucas.smith@hotmail.com"
}

linker._settings_obj_._retain_intermediate_calculation_columns = True
linker._settings_obj_._retain_matching_columns = True

linker.compute_tf_table("first_name")
linker.compute_tf_table("surname")
linker.compute_tf_table("dob")
linker.compute_tf_table("city")
linker.compute_tf_table("email")


df_two = linker.compare_two_records(record_1, record_2)
df_two.as_pandas_dataframe()
match_weight match_probability unique_id_l unique_id_r first_name_l first_name_r gamma_first_name tf_first_name_l tf_first_name_r bf_first_name ... tf_city_r bf_city bf_tf_adj_city email_l email_r gamma_email tf_email_l tf_email_r bf_email bf_tf_adj_email
0 13.161672 0.999891 1 2 Lucas Lucas 2 0.001203 0.001203 87.571229 ... NaN 0.446404 1.0 lucas.smith@hotmail.com lucas.smith@hotmail.com 1 NaN NaN 263.229168 1.0

1 rows × 39 columns

Step 3: Interactive comparisons¶

One interesting applicatin of compare_two_records is to create a simple interface that allows the user to input two records interactively, and get real time feedback.

In the following cell we use ipywidets for this purpose. ✨✨ Change the values in the text boxes to see the waterfall chart update in real time. ✨✨

import ipywidgets as widgets
fields = ["unique_id", "first_name","surname","dob","email","city"]

left_text_boxes = []
right_text_boxes = []

inputs_to_interactive_output = {}

for f in fields:
    wl = widgets.Text(description=f, value =str(record_1[f]))
    left_text_boxes.append(wl)
    inputs_to_interactive_output[f"{f}_l"] = wl
    wr = widgets.Text( description=f, value =str(record_2[f]))
    right_text_boxes.append(wr)
    inputs_to_interactive_output[f"{f}_r"] = wr


b1 = widgets.VBox(left_text_boxes)
b2 = widgets.VBox(right_text_boxes)
ui = widgets.HBox([b1,b2])

def myfn(**kwargs):
    my_args = dict(kwargs)

    record_left = {}
    record_right = {}

    for key, value in my_args.items():
        if value == '':
            value = None
        if key.endswith("_l"):
            record_left[key[:-2]] = value
        if key.endswith("_r"):
            record_right[key[:-2]] = value


    linker._settings_obj_._retain_intermediate_calculation_columns = True
    linker._settings_obj_._retain_matching_columns = True

    df_two = linker.compare_two_records(record_left, record_right)

    recs = df_two.as_pandas_dataframe().to_dict(orient="records")
    from splink.charts import waterfall_chart
    display(linker.waterfall_chart(recs, filter_nulls=False))


out = widgets.interactive_output(myfn, inputs_to_interactive_output)

display(ui,out)
HBox(children=(VBox(children=(Text(value='1', description='unique_id'), Text(value='Lucas', description='first…



Output()

Finding matching records interactively¶

It is also possible to search the records in the input dataset rapidly using the linker.find_matches_to_new_records() function

record = {'unique_id': 123987,
 'first_name': "Robert",
 'surname': "Alan",
 'dob': "1971-05-24",
 'city': "London",
 'email': "robert255@smith.net"
}



df_inc = linker.find_matches_to_new_records([record], blocking_rules=[]).as_pandas_dataframe()
df_inc.sort_values("match_weight", ascending=False)
match_weight match_probability unique_id_l unique_id_r first_name_l first_name_r gamma_first_name tf_first_name_l tf_first_name_r bf_first_name ... tf_city_r bf_city bf_tf_adj_city email_l email_r gamma_email tf_email_l tf_email_r bf_email bf_tf_adj_email
2 23.531793 1.000000 0 123987 Robert Robert 2 0.003610 0.00361 87.571229 ... 0.212792 1.000000 1.000000 robert255@smith.net robert255@smith.net 1 0.001267 0.001267 263.229168 1.730964
4 14.550320 0.999958 1 123987 Robert Robert 2 0.003610 0.00361 87.571229 ... 0.212792 1.000000 1.000000 roberta25@smith.net robert255@smith.net 0 0.002535 0.001267 0.423438 1.000000
3 10.388623 0.999255 3 123987 Robert Robert 2 0.003610 0.00361 87.571229 ... 0.212792 0.446404 1.000000 NaN robert255@smith.net -1 NaN 0.001267 1.000000 1.000000
1 2.427256 0.843228 2 123987 Rob Robert 0 0.001203 0.00361 0.218767 ... 0.212792 10.484859 0.259162 roberta25@smith.net robert255@smith.net 0 0.002535 0.001267 0.423438 1.000000
0 -2.123090 0.186697 8 123987 NaN Robert -1 NaN 0.00361 1.000000 ... 0.212792 1.000000 1.000000 NaN robert255@smith.net -1 NaN 0.001267 1.000000 1.000000
6 -2.205894 0.178139 754 123987 NaN Robert -1 NaN 0.00361 1.000000 ... 0.212792 1.000000 1.000000 j.c@whige.wort robert255@smith.net 0 0.001267 0.001267 0.423438 1.000000
5 -2.802309 0.125383 750 123987 NaN Robert -1 NaN 0.00361 1.000000 ... 0.212792 10.484859 0.259162 j.c@white.org robert255@smith.net 0 0.002535 0.001267 0.423438 1.000000

7 rows × 39 columns

Interactive interface for finding records¶

Again, we can use ipywidgets to build an interactive interface for the linker.find_matches_to_new_records function

from splink.charts import waterfall_chart

@widgets.interact(first_name='Robert', surname="Alan", dob="1971-05-24", city="London", email="robert255@smith.net")
def interactive_link(first_name, surname, dob, city, email):    

    record = {'unique_id': 123987,
     'first_name': first_name,
     'surname': surname,
     'dob': dob,
     'city': city,
     'email': email,
     'group': 0}

    for key in record.keys():
        if type(record[key]) == str:
            if record[key].strip() == "":
                record[key] = None


    df_inc = linker.find_matches_to_new_records([record], blocking_rules=[f"(true)"]).as_pandas_dataframe()
    df_inc = df_inc.sort_values("match_weight", ascending=False)
    recs = df_inc.to_dict(orient="records")



    display(linker.waterfall_chart(recs, filter_nulls=False))
interactive(children=(Text(value='Robert', description='first_name'), Text(value='Alan', description='surname'…
linker.match_weights_chart()