Documentation for comparison_level_composition
functionsΒΆ
comparison_composition
allows the merging of existing comparison levels by a logical SQL clause - OR
, AND
or NOT
.
This extends the functionality of our base comparison levels by allowing users to "join" existing comparisons by various SQL clauses.
For example, or_(null_level("first_name"), null_level("surname"))
creates a check for nulls in either first_name
or surname
, rather than restricting the user to a single column.
The Splink comparison level composition functions available for each SQL dialect are as given in this table:
DuckDB |
Spark |
Athena |
SQLite |
PostgreSql |
|
---|---|---|---|---|---|
and_ | β | β | β | β | β |
not_ | β | β | β | β | β |
or_ | β | β | β | β | β |
The detailed API for each of these are outlined below.
Library comparison composition APIsΒΆ
and_(*clls, label_for_charts=None, m_probability=None, is_null_level=None)
ΒΆ
Merge ComparisonLevels using logical "AND".
Merge multiple ComparisonLevels into a single ComparisonLevel by merging their SQL conditions using a logical "AND".
By default, we generate a new label_for_charts
for the new ComparisonLevel.
You can override this, and any other ComparisonLevel attributes, by passing
them as keyword arguments.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*clls |
ComparisonLevel | dict
|
ComparisonLevels or comparison level dictionaries to merge |
()
|
label_for_charts |
str
|
A label for this comparson level,
which will appear on charts as a reminder of what the level represents.
Defaults to a composition of - |
None
|
m_probability |
float
|
Starting value for m probability. Defaults to None. |
None
|
is_null_level |
bool
|
If true, m and u values will not be estimated and instead the match weight will be zero for this column. Defaults to None. |
None
|
Examples:
Simple null level composition with an AND
clause
import splink.duckdb.comparison_level_library as cll
cll.and_(cll.null_level("first_name"), cll.null_level("surname"))
contains
level
import splink.duckdb.comparison_level_library as cll
misspelling = cll.levenshtein_level("name", 1)
contains = {
"sql_condition": "(contains(name_l, name_r) OR " "contains(name_r, name_l))"
}
merged = cll.and_(misspelling, contains, label_for_charts="Spelling error")
merged.as_dict()
{ 'sql_condition': '(levenshtein("name_l", "name_r") <= 1) ' > 'AND ((contains(name_l, name_r) OR contains(name_r, name_l)))', 'label_for_charts': 'Spelling error' }
Simple null level composition with an AND
clause
import splink.spark.comparison_level_library as cll
cll.and_(cll.null_level("first_name"), cll.null_level("surname"))
contains
level
import splink.spark.comparison_level_library as cll
misspelling = cll.levenshtein_level("name", 1)
contains = {
"sql_condition": "(contains(name_l, name_r) OR " "contains(name_r, name_l))"
}
merged = cll.and_(misspelling, contains, label_for_charts="Spelling error")
merged.as_dict()
{ 'sql_condition': '(levenshtein("name_l", "name_r") <= 1) ' > 'AND ((contains(name_l, name_r) OR contains(name_r, name_l)))', 'label_for_charts': 'Spelling error' }
Simple null level composition with an AND
clause
import splink.athena.comparison_level_library as cll
cll.and_(cll.null_level("first_name"), cll.null_level("surname"))
contains
level
import splink.athena.comparison_level_library as cll
misspelling = cll.levenshtein_level("name", 1)
contains = {
"sql_condition": "(contains(name_l, name_r) OR " "contains(name_r, name_l))"
}
merged = cll.and_(misspelling, contains, label_for_charts="Spelling error")
merged.as_dict()
{ 'sql_condition': '(levenshtein("name_l", "name_r") <= 1) ' > 'AND ((contains(name_l, name_r) OR contains(name_r, name_l)))', 'label_for_charts': 'Spelling error' }
Simple null level composition with an AND
clause
import splink.sqlite.comparison_level_library as cll
cll.and_(cll.null_level("first_name"), cll.null_level("surname"))
Returns:
Name | Type | Description |
---|---|---|
ComparisonLevel |
ComparisonLevel
|
A new ComparisonLevel with the merged SQL condition |
Source code in splink/comparison_level_composition.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
|
not_(cll, label_for_charts=None, m_probability=None)
ΒΆ
Negate a ComparisonLevel.
Returns a ComparisonLevel with the same SQL condition as the input, but prefixed with "NOT".
By default, we generate a new label_for_charts
for the new ComparisonLevel.
You can override this, and any other ComparisonLevel attributes, by passing
them as keyword arguments.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cll |
ComparisonLevel | dict
|
ComparisonLevel or comparison level dictionary |
required |
label_for_charts |
str
|
A label for this comparson level, which will appear on charts as a reminder of what the level represents. |
None
|
m_probability |
float
|
Starting value for m probability. Defaults to None. |
None
|
Examples:
Not an exact match on first name
import splink.duckdb.comparison_level_library as cll
cll.not_(cll.exact_match("first_name"))
import splink.duckdb.comparison_level_library as cll
dob_first_jan = {
"sql_condition": "SUBSTR(dob_std_l, -5) = '01-01'",
"label_for_charts": "Date is 1st Jan",
}
exact_match_not_first_jan = cll.and_(
cll.exact_match_level("dob"),
cll.not_(dob_first_jan),
label_for_charts = "Exact match and not the 1st Jan"
)
Not an exact match on first name
import splink.spark.comparison_level_library as cll
cll.not_(cll.exact_match("first_name"))
import splink.spark.comparison_level_library as cll
dob_first_jan = {
"sql_condition": "SUBSTR(dob_std_l, -5) = '01-01'",
"label_for_charts": "Date is 1st Jan",
}
exact_match_not_first_jan = cll.and_(
cll.exact_match_level("dob"),
cll.not_(dob_first_jan),
label_for_charts = "Exact match and not the 1st Jan"
)
Not an exact match on first name
import splink.athena.comparison_level_library as cll
cll.not_(cll.exact_match("first_name"))
import splink.athena.comparison_level_library as cll
dob_first_jan = {
"sql_condition": "SUBSTR(dob_std_l, -5) = '01-01'",
"label_for_charts": "Date is 1st Jan",
}
exact_match_not_first_jan = cll.and_(
cll.exact_match_level("dob"),
cll.not_(dob_first_jan),
label_for_charts = "Exact match and not the 1st Jan"
)
Not an exact match on first name
import splink.sqlite.comparison_level_library as cll
cll.not_(cll.exact_match("first_name"))
import splink.sqlite.comparison_level_library as cll
dob_first_jan = {
"sql_condition": "SUBSTR(dob_std_l, -5) = '01-01'",
"label_for_charts": "Date is 1st Jan",
}
exact_match_not_first_jan = cll.and_(
cll.exact_match_level("dob"),
cll.not_(dob_first_jan),
label_for_charts = "Exact match and not the 1st Jan"
)
Returns:
Type | Description |
---|---|
ComparisonLevel
|
ComparisonLevel A new ComparisonLevel with the negated SQL condition and label_for_charts |
Source code in splink/comparison_level_composition.py
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
|
or_(*clls, label_for_charts=None, m_probability=None, is_null_level=None)
ΒΆ
Merge ComparisonLevels using logical "OR".
Merge multiple ComparisonLevels into a single ComparisonLevel by merging their SQL conditions using a logical "OR".
By default, we generate a new label_for_charts
for the new ComparisonLevel.
You can override this, and any other ComparisonLevel attributes, by passing
them as keyword arguments.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*clls |
ComparisonLevel | dict
|
ComparisonLevels or comparison level dictionaries to merge |
()
|
label_for_charts |
str
|
A label for this comparson level,
which will appear on charts as a reminder of what the level represents.
Defaults to a composition of - |
None
|
m_probability |
float
|
Starting value for m probability. Defaults to None. |
None
|
is_null_level |
bool
|
If true, m and u values will not be estimated and instead the match weight will be zero for this column. Defaults to None. |
None
|
Examples:
Simple null level composition with an OR
clause
import splink.duckdb.comparison_level_library as cll
cll.or_(cll.null_level("first_name"), cll.null_level("surname"))
contains
level
import splink.duckdb.comparison_level_library as cll
misspelling = cll.levenshtein_level("name", 1)
contains = {
"sql_condition": "(contains(name_l, name_r) OR " "contains(name_r, name_l))"
}
merged = cll.or_(misspelling, contains, label_for_charts="Spelling error")
merged.as_dict()
{ sql_condition': '(levenshtein("name_l", "name_r") <= 1) ' > 'OR ((contains(name_l, name_r) OR contains(name_r, name_l)))', 'label_for_charts': 'Spelling error' }
Simple null level composition with an OR
clause
import splink.spark.comparison_level_library as cll
cll.or_(cll.null_level("first_name"), cll.null_level("surname"))
contains
level
import splink.spark.comparison_level_library as cll
misspelling = cll.levenshtein_level("name", 1)
contains = {
"sql_condition": "(contains(name_l, name_r) OR " "contains(name_r, name_l))"
}
merged = cll.or_(misspelling, contains, label_for_charts="Spelling error")
merged.as_dict()
{ sql_condition': '(levenshtein("name_l", "name_r") <= 1) ' > 'OR ((contains(name_l, name_r) OR contains(name_r, name_l)))', 'label_for_charts': 'Spelling error' }
Simple null level composition with an OR
clause
import splink.athena.comparison_level_library as cll
cll.or_(cll.null_level("first_name"), cll.null_level("surname"))
contains
level
import splink.athena.comparison_level_library as cll
misspelling = cll.levenshtein_level("name", 1)
contains = {
"sql_condition": "(contains(name_l, name_r) OR " "contains(name_r, name_l))"
}
merged = cll.or_(misspelling, contains, label_for_charts="Spelling error")
merged.as_dict()
{ sql_condition': '(levenshtein("name_l", "name_r") <= 1) ' > 'OR ((contains(name_l, name_r) OR contains(name_r, name_l)))', 'label_for_charts': 'Spelling error' }
Simple null level composition with an OR
clause
import splink.sqlite.comparison_level_library as cll
cll.or_(cll.null_level("first_name"), cll.null_level("surname"))
Returns:
Name | Type | Description |
---|---|---|
ComparisonLevel |
ComparisonLevel
|
A new ComparisonLevel with the merged SQL condition |
Source code in splink/comparison_level_composition.py
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
|